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Abstract--A recently-published random-walk model of particle deposition from turbulent pipe flow, which 
gave good agreement with measured deposition velocities over a wide range of dimensionless stopping time 
(z +), predicted a large build-up in particle concentration close to the wall for low values of z + ( < 10). 
The present work demonstrates that this effect is very likely to be an artefact of the failure of the 
random-walk prescription to satisfy the "well-mixed" condition (which requires that in the limit that 
particles follow the eddy motions of the carrier fluid exactly an initially uniform concentration should, 
on average, remain so). The consequences of this failure are shown first by analysing the transport 
equation underlying the random-walk process, in the course of which it is shown how a one-dimensional 
form of the transport process can be used to calculate deposition velocities, analogous to the one-dimen- 
sional eddy-diffusivity equation conventionally used. Secondly, the published random-walk procedure is 
reformulated to satisfy the "well-mixed" condition and applied to the problem of deposition from 
turbulent pipe flow (albeit with simplified flow characteristics and particle equation of motion). No 
concentration build-up is observed, whereas a build-up of similar magnitude to that observed in the earlier 
work returns if the unmodified prescription is applied to the same problem. The reformulated random- 
walk model itself gives results for deposition velocity vs ~ + which are sufficiently encouraging to suggest 
the work could be carried further. 

Key Words: particles, deposition velocity, turbulence, inertial impaction, interception, random-walk, 
pipe flow. 

1. I N T R O D U C T I O N  

The need to predict the deposition of aerosol particles or small droplets from a turbulent gas stream 
to a bounding surface arises in a wide variety of situations, e.g. in the design of air-cleaning systems, 
the estimation of plate-out in nuclear-reactor coolant circuits and the assessment of the hazard 
posed by toxic pollutants in the atmosphere. Many mechanisms may contribute to this deposition, 
including inertial impaction, Brownian diffusion, gravitational settling, electrostatic forces and 
thermophoresis. However, for electrically-neural particles, inertial impaction is often the dominant 
mechanism for particles above about 1 gm in diameter. 

There have been many attempts to model inertial impaction to the smooth wall of a pipe carrying 
aerosol suspended in a turbulent flowing gas [see Kallio & Reeks (1989) for a list of earlier 
references]. Many useful data are available on the Eulerian properties of the turbulence in this 
sittration. The most common modelling approach has assumed that particles follow the fluid 
motions until they are a certain distance from the surface, then make their final crossing to the 
surface in a "free flight" which short-circuits the resistance afforded by the near-surface fluid layers. 
The distance from the boundary at which the free flight is taken to commence is related to the 
stopping distance of the particle for a given projection velocity. However, in order to match 
experimental data, the required velocity turns out to be unreasonably high, whereas, if it is related 
self-consistently to local fluid velocities at one stopping distance from the wall, an underprediction 
in deposition by 1-2 orders-of-magnitude results (Davies 1966). 

In addition, the "free-flight" notion suffers from a conceptual difficulty in that particles are 
assumed to faithfully follow the fluid motions until they are within one stopping distance of the 
boundary, whereas in reality the tendency to disentrain from eddies is present throughout the fluid. 
Liu & Ilori (1974) introduced a modified particle diffusivity to account for this effect, but the 
attempt was only partially successful, and the manner in which the diffusivity was modified also 
raises conceptual difficulties (Reeks 1982). A key feature of eddy-diffusivity models is that they deal 
with "local" gradients in the concentration, whereas there is experimental evidence that finite 
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lengthscales and timescales play a vital role in boundary-layer turbulence (Cleaver & Yates 1975). 
When the aim is to evaluate the effect of an additional timescale, namely the stopping time of a 
particle, it seems unlikely therefore that local models will provide the best approach. 

Kallio & Reeks (1989), hereafter denoted by KR, took a major step forward by developing a 
Lagrangian trajectory model for calculating turbulent inertial deposition to a smooth pipe surface. 
In this type of model, the trajectories of individual suspended particles are followed as they interact 
with the turbulent flow field. Modelling the latter in terms of eddies that persist for a finite time 
before decay enables the timescales present in turbulent flow to be recognized. The stopping time 
of a particle enters the modelling via the response of a particle to the eddy in which it finds itself 
at any given time. In this way, the inability of particles to fully follow the eddy motions is 
represented throughout the flow. A stochastic element enters via the choice of eddy velocity for 
each eddy that the particle finds itself in: usually the velocity is sampled from a Gaussian 
distribution with standard deviation equal to the Eulerian r.m.s, turbulent velocity. The method 
thus involves tracking a large number of particle trajectories in order to obtain estimates of"mean" 
parameters--such as the deposition velocity--with acceptably low statistical error. Although 
conceptually appealing, application of the method does depend on the availability of information 
on Lagrangian timescales. 

KR were by no means the first to treat the turbulent dispersion of suspended particles via a 
random-walk model [for some earlier references, see Underwood (1991a)], but their work had the 
virtue, inter alia, of recognizing that the time an eddy survives should be chosen randomly if the 
correct asymptotic behaviour is to be obtained in the limit of homogeneous turbulence. This 
introduces a second stochastic element into the model. Furthermore, their model is carefully 
formulated to ensure that, in the limit that particles are points following the eddy motions perfectly, 
zero deposition results. The model yielded good agreement with the experimental data of Liu & 
Agarwal (1974) on the variation of deposition velocity with particle stopping time, without the need 
for any adjustable fitting parameters. 

A startling feature of the KR results, however, is the prediction of a build up in particle 
concentration in the region of very small eddy velocities close to the boundary, an effect which 
increases as particle inertia diminishes. The effect is not minor, amounting to nearly a 2 
orders-of-magnitude increase in concentration near the wall compared to its value far from the wall, 
for particles around a few microns in diameter. Heuristically, the effect can be viewed as the result 
of particles being propelled by larger "kicks" from regions of relatively large turbulent velocities 
into regions where they receive smaller kicks and from which they therefore have difficulty escaping. 
However, in reality the situation is more complex in that the detailed prescription of KR leads to 
an acceleration/deceleration of particles which partly compensates for the above asymmetry (see 
later). 

Such an effect, if real, would have important repercussions for other aspects of the modelling 
of mass and heat transfer from the bulk flow to the boundary. Similar behaviour was apparently 
observed in an earlier attempt at random-walk modelling of inertial deposition (Hutchinson et al. 
1971) and also emerged from an eddy-diffusivity model (Reeks 1982) modified to include a 
"turbophoretic" drift velocity (which accounts for the influence of particle inertia within the 
framework of a "local" model). Experimentally, some authors have found a modest increase in 
particle concentration near the wall [e.g. Sun & Lin (1986) find a factor of 2-3 for particles of order 
1 #m in size], whereas others have not; the role played by rebound and re-entrainment in the 
experiments is unclear. 

A build-up in concentration similar to that observed by KR was also noted in another type of 
random-walk modelling that has been widely applied to turbulent dispersion in the atmosphere [the 
so-called "Langevin-equation" approach (Sawford 1985)]. The phenomenon has been the subject 
of much discussion and analysis (Wilson et al. 1981; Legg & Raupach 1982; Thomson 1984) and 
was found to be an artefact of an incorrect specification of the random-walk process in 
inhomogeneous conditions. To be physically consistent, the model should satisfy the constraint that 
in the limit that the pollutant follows the eddy motion of the carrier gas exactly there should be 
no build-up of concentration anywhere. This is equivalent to the requirement that if the 
random-walk process is applied to the elements of the carrier fluid itself (assumed incompressible) 
there should be no build up of fluid density anywhere. The criterion has been termed, for short, 
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the "well-mixed" condition (Thomson 1987) on the grounds that in this limiting case an initially 
uniform concentration should remain so (on average) as the elements are propagated by the 
random-walk process. 

The well-mixed condition applied to the "Langevin-equation" model in inhomogeneous 
conditions leads to a requirement that even when the actual suspended particles follow the flow 
exactly the "particles" tracked in the simulation are subject to an acceleration which is additional 
to the velocity changes introduced by the random "kicks" representing interaction with the 
turbulent flow. That such an acceleration has to be "imposed" stems from the extreme simplicity 
of the modelled turbulent flow field. The author has recently worked out the implications of the 
"well-mixed" condition for the type of random-walk process utilized by KR (Underwook 1991c) 
and found that it also requires an acceleration of the simulation "particles" quite separate from 
the changes in velocity that arise when one eddy is replaced by another (section 2). 

This acceleration, the magnitude of which is related to the gradient in the r.m.s, turbulent 
velocity, achieves a neat balancing in the limiting case that the suspended particles exactly follow 
the flow: it precisely counteracts the asymmetry in "kicks" which would otherwise lead to an 
accumulation in regions of low r.m.s, turbulent velocity. This does not necessarily imply that there 
can be no build-up when the particles are no longer able to faithfully follow the flow, e.g. as a 
result of their inertia. McLaughlin (1989) and Brooke et al. (1992) found such an accumulation 
of larger particles when trajectories were computed in a directly-simulated three-dimensional 
time-dependent turbulent flow field (a procedure which should automatically satisfy the well-mixed 
condition). However, the effect was found to increase with particle inertia, contrary to that observed 
by KR. 

Thus, the aim of the present work is to ascertain whether or not the build-up in concentration 
observed by KR is likely to be an artefact of a deficient formulation of the random-walk model 
or whether it might remain even if the model is modified to satisfy the well-mixed condition. This 
goal will be achieved by a combination of theoretical analysis and computer simulation of a 
somewhat simplified problem, which nevertheless contains all the elements of the KR calculation 
vital for the point at issue. 

2. ANALYSIS 

2.1. Reduction to a One-dimensional Problem 

The simulation used by KR was two-dimensional: both the advection of a particle down the pipe 
(x-direction) and the turbulent transport perpendicular to the pipe walls (y-direction in KR's 
notation) was tracked. However, KR noted that the concentration profile in the y-direction became 
virtually independent of x sufficiently far down the pipe from where particles were "injected". In 
this "equilibrium" situation it is possible to define a deposition velocity (the ratio of flux to 
concentration) which is dependent on the characteristics of the fluid flow and the physico-cbemical 
properties of the dispersed phase but not on the source configuration nor on x. 

It would be very economical if the quasi-equilibrium y-profile could be generated directly by a 
one-dimensional simulation rather than as the asymptotic behaviour of a two-dimensional 
simulation. This turns out to be possible subject to certain provisos, as has been demonstrated 
elsewhere (Underwood 1991b). 

In the present context, the one-dimensional random-walk can be formulated straightforwardly 
provided the effect of the Saffman lift force (Saffman 1965) is ignored, where the latter arises from 
the relative x-motion between a particle and the shear flow. This force creates a coupling between 
x- and y-motions that would complicate the one-dimensional treatment. However, its omission is 
not significant for the present purposes since KR found a similar build-up in concentration even 
in the absence of the lift force (and indeed the concentration profiles they present were calculated 
without it). In addition, the behaviour of the deposition velocity vs stopping time was qualitatively 
similar both with and without lift. Thus, the lift force will be ignored for the purposes of the present 
investigation. 

It is assumed that the radius of the pipe is large enough that the net flux in the y-direction can 
be assumed constant across the y-regime of interest. 
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2.2. One-dimensional Transport Equation 
Consider a steady-state situation in which the source releases a constant number of particles per 

unit time. Quantities below are normalized to a constant number of particles released from the 
source. 

Let n+(y, v+) dv+ by the number of particles per unit range of x which cross level y upwards 
with vertical velocity in the range v+ to v+ + dv+ (and similarly n_ for downward-moving particles). 
In the "equilibrium", constant-flux limit, conservation of particles can be applied separately in the 
y-direction since the number of particles entering a unit "slice" of x from the left balances, on 
average, the number leaving from the right as a result of the negligible x-gradient. This enables 
an equation for n+ to be derived (Underwood 1991b) which expresses the change in n+ over a 
spatial interval 6y in terms of the "scattering out" from the velocity interval v ÷ to v ÷ + dr+ (i.e. 
eddy changes which put particles outside this velocity range) and "scatterings in" (i.e. eddy changes 
which put particles into this velocity range). For homogeneous turbulence and in the limit that 
particles follow the flow exactly, this takes the following form: 

dn+ n+(y, v+) +p(v+)c(y), [1] 

where :ire is the Lagrangian timescale (i.e. the mean time between "scatterings"), p(v+) dr+ is the 
probability of a particle emerging from a scattering with vertical velocity upwards in the range v+ 
to v+ + dv+ (taken to be given by the Eulerian distribution of turbulent y-velocities in the flow) 
and c(y) is the concentration. To be precise, c is the across-flow (i.e. z-direction)-integrated, 
time-integrated particle number concentration, with dimensions IT L-2]. 

A similar equation to [1] applies to downward-moving particles, and the two equations together 
are the counterpart in this random-walk model to the one-dimensional eddy-diffusivity equation 
which is conventionally used as a starting point for theoretical estimates of dry deposition velocity. 

For this homogeneous case, and assuming particles are able to follow the eddy motions perfectly, 
the simulation keeps a particle's y-velocity fixed until it enters a new eddy. Satisfaction of the 
"well-mixed" condition in this case is ensured by the fact that when c (and n+) are independent 
of y, 

n+(y, v+)ocv+p(v+), [2] 

as it should be, since p(v+) dv+ is the relative number of eddies in the flow having y-velocities in 
the range v+ to v+ + dv+. 

2.3. Derivation of the Acceleration 
For the inhomogeneous situation, generally both T L and p(v) are dependent on y [the latter 

henceforth being written py(v)]. In this case, if v is held constant between "scatterings", then setting 
c constant and n+ocV+py(V+) no longer constitutes a solution of [1], violating the well-mixed 
condition. 

The situation can be recovered if v is allowed to vary between scatterings; the acceleration must 
be such as to satisfy 

d(n+(y, v+)6v +) 
= 0 [31 

dy 

when n+(y, v+)ocv+py(v+) where d/dy is a total derivative (allowing for changes in v with y also) 
and the interval 6v+ has to be included since it changes with y also. 

For a Gaussian distribution of turbulent y-velocities, with standard deviation a (y),  the required 
variation in v turns out to be (Underwood 1991c): 

dv+ = a ,  ( v+ +a(y___))), [41 
dy ~,a(y) v+ / 

where a '  is da/dy. Introducing t / =  v/a, [4] can be re-written as 

d r / _  1 [51 
da r/a' 
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which integrates to 

2 _ 2 ln(~) = const. [6] 

It is important to note that, for #' positive, an initially negative ~? (i.e. negative v) may change sign 
between scatterings, i.¢. the particle can change direction. 

Expressed in terms of the change in velocity with time since the last scattering, t, [4] becomes 

de+ ( v _ ~ _ )  
= aa '  1 + + , [71 

which, incidentally, shows that the singularity at v+ = 0 in [4] is harmless. It is interesting to note 
that an acceleration of exactly this form has been obtained in a careful analysis of the "Langevin- 
equation" type of random-walk modelling with Gaussian forcing (Luhar & Britter 1989). 

It is readily shown that [7] applies to negative values ofv also. Thus, still in the limit that particles 
are following the carrier fluid exactly, the average acceleration, taken over the distribution of v at 
a given height, becomes d(~r~)/dy, as it must from fluid-dynamic considerations (e.g. Legg & 
Raupach 1982). 

It is worth noting that in the well-mixed limit, for which c is independent ofy  and n±(y, v ± ) oc Iv ± [ 

N±(y)oca(y),  [8] 

where N+ is the integral of n+ over all values of v+ and similarly for N_. Also, 

l 
[91 

where < > denotes the average over particles crossing a given level y. 
Since c can be written as 

it can be seen that a constant value of c is preserved in the well-mixed case by a cancelling of the 
opposing variations of N± and <l/v± > with g. 

24. Implications for the KR Simulation 
In the KR simulation, the ratio v/a is maintained constant between scatterings. The superficially- 

plausible alternative of keeping v itself constant between scatterings would have led to far-too-high 
a probability of reaching the boundary in a single flight from relatively far away. With v/# held 
constant, the eddy velocity approaches zero as the boundary is approached since a itself approaches 
zero. 

Thus, simulation particles in the KR random walk accelerate (or decelerate) between scatterings 
even in the limit that they are following the eddy motions perfectly, since a is function of y. 
However, the magnitude of the acceleration is not the same as that required to satisfy the 
well-mixed condition. In fact, it turns out that the KR prescription is such as to ensure that 

dn±(y, v+) = 0 [111 
dy 

(see the appendix). 
In this case, it is readily shown that, in the limit of point particles following the eddy motions 

exactly, N± satisfy 

N±(y) = const, [12] 

rather than [8], whe~as <l/v+> continues to satisfy [9]. Thus, as y decreases, the concentration 
increases in direct proportion to the increase in l /a(y) ,  a result also found for the "Langevin- 
equation" type of random-walk modelling when v/tr is held constant (Wilson et al. 1981). 

This could readily account for the magnitude of the concentration increase observed by KR: for 
the smaller value of dimensionless stopping time (see section 3.1), x +, for which the concentration 
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profile is presented (i.e. r + = 1), the concentration at y ÷ (the dimensionless y-coordinate)= 1 is 
around 30 times its value at y+ = 100, whereas tr has decreased by a factor of 180. The fact that 
the calculated concentration does not continue to rise as y ÷ approaches zero---and indeed that the 
concentration rises less rapidly than the decrease in tr would imply--can be attributed to departures 
from the idealized case of point particles exactly following the eddies. Thus, even for r ÷ = 1, there 
is some deposition: no particle which reaches within one particle radius of the boundary returns, 
which significantly cuts down the concentration in the vicinity of the boundary. At r ÷ = 100, where 
the effect of loss at the wall is very much higher, this effect has apparently cancelled any 
concentration increase in the KR results. 

This evidence suggests that at least a part of the concentration build-up observed by KR is a 
consequence of the failure of their random-walk prescription to satisfy the well-mixed condition. 
However, it remains a possibility that, even if the well-mixed condition were to be satisfied, such 
a build-up may arise when the particles have an inertial lag compared to the surrounding fluid. 
In section 3 below, a random-walk prescription which satisfies the well-mixed condition is defined 
for the case of inertial deposition to a smooth pipe surface. The specification of the turbulent-flow 
parameters differs from that given in KR in that the dependence of tr on y is linearized (whereas 
in KR it is near quadratic close to the boundary); this modification leads to a major saving in 
computation, as explained in section 3.1. However, it does not represent a vital simplification from 
the viewpoint of the concentration build-up issue, although there will be differences in detail in the 
resulting concentrations and deposition velocities compared to those that would have been 
obtained using the more complex tr(y) prescription. 

3. S I M U L A T I O N  

3. I. Specification of a(y) 
As in KR, dimensionless variables are defined by normalizing distances by v/u. (where v is the 

kinematic viscosity of the carrier fluid and u. is the friction velocity), velocities by u. and times by 
v/u2.. Normalized variables have a superscript " + " .  

The variation of a + and y + is simplified to 

t r+ (y+)=~y+/30  y + < 3 0  [13] 
y+ 1>30. 

It is readily shown from [5] that ~/(i.e. v/a--or alternatively v+/a +) satisfies 

dr/ do + 
dt + d y + ,  [14] 

which is constant for a linear variation of cr with y. Thus, in the non-uniform tr(y) regime, r/ 
increases linearly with time-since-last-scattering, t. The position at time t of a particle which is 
following the eddy motion exactly can therefore be determined analytically, whereas, for the 
variation of tr used by KR, numerical integration would be required, thereby considerably slowing 
down the simulation. Utilizing this simplification, the tracking of an adequate number of particles 
through their one-dimensional random walk comes within the range of a desk-top microcomputer. 

It is worth noting that the simulation must account for the fact that particles following the eddy 
motion exactly and which enter the non-uniform tr region may change direction (see section 2.3) 
and may even re-emerge from the non-uniform region before their next scattering. 

3.2. Random Walk for Particles with Inertia 
The simulation "particle" now represents a real suspended particle which is unable to follow 

exactly the eddy in which it sits. A basic premise adopted is that the eddy velocity and time-to-decay 
are not affected by whether or not it contains suspended particles--i.e, the pollutant is "passive". 
The eddy velocity changes discontinuously at a scattering (i.e. when one eddy is replaced by 
another), but the particle velocity is now assumed continuous (although its acceleration is 
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discontinuous). When the eddy changes, the particle starts to adjust to the new eddy velocity 
according to the following equation of motion: 

dv__~p = v - Vp(t), [15] 
dt 

where Vp(t) is the velocity of the particle and ~ is the particle stopping time, given by 

. 2 ( ~ )  a2 

z = - - "  [16] 
9v ' 

pp is the particle density, pf is the fluid density, v is the kinematic viscosity of the fluid and a is 
the particle radius. It is assumed that no body forces (including the effect of gravity) are operative. 
The eddy velocity v is a function of time in the non-uniform region but not in the uniform region. 
Equation [15] is a very simplified equation of motion, omitting such terms as the Basset history 
integral and modifications to Stokes' law. However, the omissions were considered justifiable by 
KR, and the above equation is the one they used, apart from the additional omission of the Saffman 
lift force, discussed earlier. 

According to the basic premise given above, the time-to-next-scattering is not governed by the 
values of y + that the particle passes through between seatterings (labelled y+)  but by the values 
that the eddy passes through (i.e. the locations that a reference simulation particle following the 
eddy motion exactly would pass through). When the eddy decays, the particle passes into a new 
eddy with velocity representative of the eddies found at the location of the particle. Thus, the particle 
is envisaged as staying within the influence of the current eddy until the latter decays, even though 
it may stray some distance from a reference particle following the eddy motions exactly. When the 
current eddy decays, the simulation particle "picks up" an eddy which is representative of the local 
environment in which it has been "dumped". This prescription is easily extended to include the 
"trajectory-crossing" effect (whereby particles lose the "memory" of turbulent velocity more 
rapidly because of their relative motion to the fluid) by defining a lengthscale for the range of 
influence of an eddy (potentially a function of y)--i.e, an eddy "size"--sueh that, if the particle 
strays further than this distance from the reference position before the current eddy decays, a new 
eddy is chosen prematurely. Trajectory-crossing will be omitted here since KR did not include it, 
but remains a possibility for future work. 

The above prescription for the random-walk of particles with inertia is not unique but it is 
intuitively appealing and does satisfy the broad physical constraints of the problem, in particular 
the well-mixed condition in the limit that z approaches zero. 

3.3. Time-to-next-scattering 

The variation of the Lagrangian timescale with y is taken to be exactly that used by KR over 
the range 0 < y + < 200, namely 

10 y+ ~< 5 
T{ = bo+bly+ +b2(y+) z 5 < y + < 2 0 0 ,  [17] 

with b0 = 7.122, b~ = 0.5731 and b2 = -0.00129. 
Particle trajectories are actually initiated some distance above y + = 200 (see section 3.5); for 

y+ > 200, T{- is held fixed at the y+ = 200 value given by [17], defining a third, "core" region of 
constant Lagrangian timescale. 

In KR, the time-to-next-scattering is chosen by "randomizing the integral scale from an 
exponential probability density distribution"; i.e. if an eddy change occurs at y+,  the dimensionless 
time to the next change is given by [ t+] 

exp T ~--y--~+ =r ,  [18] 

where r is a random deviate chosen uniformly on the range 0-1. 
However, the analysis in section 2 assumes that the probability that a particle (which is following 

the eddy exactly) at y ÷ scatters in the next dt + is given by dt +/T~ (y), in keeping with the Markov 
nature of the process envisaged. On this view, T L is no longer interpreted as an integral timescale 
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but rather as a timescale representing the (local) rate at which the turbulent velocity is losing its 
correlation (Durbin & Hunt  1980). When T~ is not constant, this does not result in an exponential 
probability distribution for the time-to-next-scattering. Thus, even when the "correct" acceleration 
is being used, if t + is chosen according to [18] the well-mixed condition ceases to be satisfied and 
spurious concentration build-up can arise. 

Here, therefore, t + is chosen via the following: 

exp -- T~(y+(t,)) =r, [19] 

given that the LHS of [19] approaches zero for large enough t ÷ 
Alternatively, the integral on the LHS of [19], denoted L can be written as 

I = dy' [20] 
~ v+r~(y ' )  ' 

where yg- is the value o f y  + at the site of the last scattering. 
Generally, [19] is much harder to invert than [18], particularly if the particle can enter the 

non-uniform region of  a, where v + varies with y +. In the region of  constant a (i.e. y + > 30), T~ is 
either a constant or a quadratic function of  y +, and the integral can be performed analytically. For 
the non-uniform region (y  + ~< 30), a simple numerical scheme was introduced. 

3.4. Particle Velocity 
At each scattering, a new eddy velocity is sampled from a Gaussian distribution with standard 

deviation given by a (y).  
In the uniform region of  a, [15] is analytically solvable for vp as a function of  time-since-last-scatter- 

ing. In the non-uniform region, the eddy velocity between collisions is governed by [14], and the 
formal solution of [15] can be written as 

'f0 [ vp(t) = vp(0)exp + - exp v(t') dt'; [21] 

vp(0), the particle velocity at entry into the current eddy, is simply taken to equal its velocity at the time 
that the last eddy decayed. 

Even for a linear variation of a (y),  the solution to [21 ] cannot be given in terms of simple functions, 
since it is v/a which has a straightforward dependence on t, rather than v itself. However, the need for 
numerical integration during the course of  the simulation was kept to a minimum by a procedure 
which made use of  linear interpolation on a pre-calculated table of values. 

3.5. Termination and Injection 
The solution of the equation for n+ (the equivalent of [1] for the problem under consideration) 

requires a lower boundary condition: it is assumed that particles are always lost when they reach the 
wall (i.e. no rebound). Allowing for the finite size of particles, the condition is that 

n+(a, v+) = 0, [22] 

where a is the physical radius of  the particle (related to z via [16]). In the simulation, this implies 
that a particle trajectory terminates if the particle reaches a distance a of the boundary (i.e. y + drops 
below a +). 

The corresponding equation for n_ requires an upper boundary condition. In principle, to obtain 
the exact one-dimensional profile in the present case, the upper boundary should be extended to 
infinity, but in practice it only need be taken sufficiently high that the profile up to the height of  interest 
has converged sufficiently close to the "true" profile. 

The procedure can be illustrated for the simple case of homogeneous turbulence (with particles 
exactly following eddies) referred to in section 2.1. The solution for n_ then becomes (see [1]) 

n_(y,v_)= f~c(~y')p(v_)exp~ (Y----Y')-]dy'. [23] 
j~ ~L L V_TL J 

Formally, the upper limit can be replaced by a finite one as follows: 

[ (Y--Y;) l  f ~ p ( v _ ) e x p ~  ( Y - Y ' ) l d y ' ,  n ( y ,  v_) = n_(yi, v_)exp v--T~ J + jy ~' c(y')~L k v_---T~ J [24] 
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where y; is any value greater than y, but this just throws the difficulty onto specifying nay , ,  v_). 
However, as  y,. becomes large compared to y ,  n_  and c at y become insensitive to inaccuracies in 
the specification of  n_(yt, v_) and so it is only necessary to specify it approximately. 

To continue the illustration, in the limiting case of  particles following the eddy motions exactly 
(with no loss at the wall therefore), it has already been shown that 

nay, ,  v_) = Clv_~,(v_), [25] 

where C is the (constant) concentration. If, now, particles follow the eddy motions except for when 
they reach the wall, where they are lost (rather than being reflected), c(y) will no longer be constant 
(in fact it is close to being a linearly increasing function of  y), but a satisfactory procedure, when 
information is being sought only up to a value of  Yl, is to choose a value of y~ sufficiently greater 
than Yl and set n_(yi, v_) equal to its asymptotic form [25]. (The term "asymptotic" is used since 
the LHS of [1] becomes small compared to either term on the RHS as y becomes large in the present 
example.) In terms of  the simulation, particles are "injected" at y~ with a downward velocity chosen 
randomly from a distribution which satisfies [25], achieved by choosing 

v_ = - cr [2 ln(r)]l/Z. [26] 

The first value of  the time-to-next-scattering can be chosen as if a scattering had just occurred 
at y~. 

To find what constitutes "sufficiently" high for y,. in order to achieve a specified degree of  
convergence below Yl will generally require the simulation to be repeated for a few trial values of  
y~, but this is not very onerous, given that the simulation is only one-dimensional. 

Returning now to the case of  particles with inertial lag, initiation of  a trajectory at y~ requires 
the specification of both the eddy velocity and the particle velocity (and the time-to-first-scattering). 
In principle, a particle can be travelling downwards across the level y~ in an eddy which is travelling 
upwards; in any case, particle and eddy speeds may be quite different, Nevertheless, a simple, 
approximate specification is to choose the eddy velocity according to [26] and to assume that the 
particle velocity is perfectly correlated with the eddy velocity. 

Although the correlation is assumed to be unity, the mean value of  Vp on injection is not assumed 
equal to the mean value of  v but is reduced--to account for inertia--to the local "equilibrium" 
value (i.e. reduced by a factor [1 + (T/TL)]I/2). 

Once a particle is injected, it is tracked until it is either lost at the wall or it emerges above y ,  

3.6. Scoring 
During the random-walk, various data on the particle trajectory need to be recorded at the values 

of  y + of  interest, in order to form estimates of  concentration, flux, deposition velocity etc. This 
is achieved by defining a series of"scoring" levels Yk, k = 1, 2 . . . .  n, with associated scoring arrays, 
and recording the values of  vp, 1/Vp, 1/[Vp[ etc. at each crossing of  any level. 

The process of  scoring must allow for the fact that between scatterings a particle may change 
its direction of  travel and thus cross a given level more than once. When the eddy is travelling in 
the constant-¢ region, for which the eddy velocity is constant, at most one reversal can occur 
between scatterings, but when the eddy is travelling in the non-uniform region up to two reversals 
are possible between scatterings. 

The key quantities of  interest for comparison with the work of  KR are the concentration profile 
and the deposition velocity (labelled K by KR). In the present work, the latter is defined, 
conventionally, as the ratio of  the net downward flux at a given level to the concentration at the 
same level. (N.B. In the one-dimensional simulation, the net downward flux is a constant by 
definition but the concentration is not when there is loss at the boundary.) The principal level of  
interest for K is y+ = 200 in line with the work of  KR, and so y+, introduced in section 3.5, is 
taken to be 200. 

The definition of  K used here differs somewhat from that introduced by KR, who appear to use 
the mean concentration over 0 < y + < 200. They justify this on the grounds that it corresponds 
more closely to what is actually measured in experiments, but this argument is open to question: 
if the flux is measured via the attenuation per unit length of  pipe, as they envisage, the appropriate 
mean concentration should include the core of  the flow and not just the thin layer near the wall, 

MF 19/3~F 
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which would weight the pertinent concentration more towards the "core"  value. In practice, in the 
current work, the concentration is not a strong function of y + across the region 0-200 and so there 
is not a large difference between the two estimates. 

3. 7. Checks 

A valuable check on the computer program implementing the random-walk model defined above 
is provided by the well-mixed condition. In the limit that the simulation particles coincide with the 
reference particles (which follow eddy motions exactly), the concentration should become uniform. 
Figure 1 shows the dimensionless normalized concentration (c/N_(yi))÷--denoted by c~--vs  y ÷ 
resulting from such a simulation using l05 particles in 10 batches of l04 in order to estimate the 
statistical error shown, which is < 1% for y ÷ > 10, rising to about 4% at y ÷ = 1. The dashed line 
on the figure denotes the expectation value of c~,  readily shown to equal ~ in this case. 

3.8. Results 

3.8.1. Deposition velocity 

A series of  simulations for increasing values of  yi and for various z ÷ values established that a 
choice of y~ = 600 was adequate to achieve convergence on the deposition velocity at y÷ = 200 
to within an accuracy comparable to the target statistical accuracy of  around 1%. Figure 2 shows 
the dimensionless deposition velocity K ÷ (200) as a function of  z ÷, obtained in each case using 
a sample of  l05 trajectories in 10 batches of  104; the statistical-error bars are too small to be shown 
for the larger values of  K ÷. The solid curve is merely an eye guide. The results show the principal 
features of  the experimentally-observed dependence of  K ÷ on y ÷, including the rapid rise over the 
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Figure 3. Dimensionless normalized concentration vs dimensionless distance from the wall for three values 
of the stopping time. 

range 1 < z + < 10 and the "roll-off" in K + values above about T + = 30. The latter arises from 
the reduction in the velocity that a particle is able to attain during the life of an eddy and from 
the limit on the time available for the particle to "stray" from its reference particle, set by eddy 
decay. 

It is conventional to distinguish two contributions to K+: impaction and interception. The 
former, arising from the inability of particles to follow the eddy motion precisely, would 
contribute even if a were set to zero in the boundary conditions [22] (but z + left unchanged). 
Interception, due to the finite size of  particles, would arise even if particles did follow the 
motion of the eddies exactly but were deposited when the "eddy" reached a dimensionless 
distance a + from the wall. Figure 2 also shows the "pure" interception contribution, obtained 
by repeating the simulation for each x + value with a particle forced to coincide with the reference 
particle representing the eddy, except if it reaches a dimensionless distance a + from the wall, 
when it is deposited. At x + =  1, interception contributes a sizeable fraction of the total 
deposition, but rapidly becomes negligible at larger x+. It is likely that the interception 
contribution is sensitive to the precise manner in which ¢ approaches zero as y approaches zero, 
and appreciable differences can be expected if the KR behaviour (near quadratic at small y) were 
to be used. 

In view of  the simplifications adopted, the aim of the current work is not to provide the best 
possible model for inertial deposition to a smooth wall. Nevertheless, it is interesting to compare 
the results from the model with the well-known data of  Liu & Agarwal 0974), denoted on the 
figure by the crosses. The overall agreement is remarkably good. Although this may result from 
a cancellation of omitted effects, it is sufficiently encouraging to suggest proceeding further with 
this type of modelling. 
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3.8.2. Concentration profiles 

Figure 3 shows the dimensionless normalized concentration for y ÷ ~< 200, for z ÷ = 1, 10 and 100. 
The solid lines are merely eye-guides through the results; the 1 SD statistical-error bars lie within 
the plotted points. At z ÷ = 1, where the concentration build-up for y ÷ < 10 was most  pronounced 
in the K R  results, no build-up is observed. In fact, the concentration is constant (within the 
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Figure 6. Concentration profiles for three values of the dimensionless stopping time, obtained using the 
KR random-walk formulation. 

statistical accuracy) until y + <  3 where the effect of loss at the wall generates a decreasing 
concentration as y + decreases. 

For 3 + = 10, there/s a modest peak in concentration around y+ = 1, but this arises more as a 
result of a dip in concentration just below the transition into the region of varying ~, with the 
concentration recovering at smaller y + to a value close to that found in the uniform-~ region, 
before again falling off due to loss at the wall. A check was made that this effect was not an artefact 
of  the injection procedure both by increasing Yi for the given injection prescription and by adopting 
a different prescription: the feature was preserved in each case. The dip can be understood as arising 
from particles which are "thrown" into the non-uniform region from above, bringing with them 
higher velocities on average than the local eddy velocities. This is not balanced by a similar effect 
arising from particles moving up from regions of low ~ since, inter alia, there is an inequality in 
the number of  upward- and downward-moving particles at any point (due to the deposition at the 
wall). 

The spatial extent of  the "dip" is consistent with this explanation, being of order ~ +o-+--where 
+ is the (dimensionless) a value in the uniform region--i.e, of order 10. An approximate estimate (7 u 

of the relative magnitude of  the dip is (Ay d~/dy)/~, where Ay is the typical distance a particle could 
stray from the reference particle in a single flight between scatterings. Taking the latter to be of 
order ~o- gives a fractional effect of z d~/dy, i.e. ~ in the present case. For T + = 10, this implies 
about a 30% effect at most, which is consistent with that observed. 

This argument is also consistent with the observation of no dip for x + = 1, since the above 
estimate would be reduced by a factor of  10 for this case, bringing the effect down to the level of 
the noise. On the other hand, at z + = 100, one does not expect an order-of-magnitude increase in 
the effect since the lifetime of  the eddy sets a limit on how far a particle can stray from the reference 
particle, with T~- of  order 10 in the region of interest. For ~+ = 100, the positive concentration 
gradient due to the loss at the wall is dominant and leads to a monotonic decrease in concentration 
with decreasing y +. However, the tendency for the concentration to "dip" just below y + = 30 can 
still be detected in a marked change in slope there. Thus, there is only a fairly narrow "window" 
of z + values for which even this modest peak at low y + can be observed. 

The effect observed here at ~ + = 10 is certainly not large enough to explain the orders-of-mag- 
nitude build-up observed by K R  at x + = 1. At the pertinent values of y +, the value of d~r +/dy + 
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in their work is smaller than in the present work and, as noted above, the effect is expected to 
diminish with diminishing • + to become negligible at T + = 1. On the other hand, the spurious 
build-up due to violation of the well-mixed condition will become more noticeable as z + diminishes, 
since the effect on concentration profile of loss at the wall decreases. 

Figure 4 shows the effect on the concentration profile (for z + = 1) of using the "exponential" 
method of choosing the time-to-next-scattering ([18]) rather than that represented by [19]. At its 
peak, the concentration is about 5 times higher than that obtained with the "well-mixed" 
formulation. Thus, the acceleration of simulation particles between collisions and the time-to-next- 
collision jointly have to be modelled correctly if spurious non-uniformities in the concentration 
profile are to be avoided. The deposition velocity is about a factor of 6 higher when [18] is used 
rather than [19]. 

3.9. Application of the KR Prescription 
To confirm the conclusions reached in section 2 concerning the random-walk formulation of KR, 

it is of interest to apply their prescription to the present simplified boundary layer. 
The basic requirement in their model is that in the non-uniform region of tr, (v/g) should be 

held constant between scatterings, i.e. 

t/ = q0, [27] 

where the subsrcipt 0 refers to the value immediately after the last scattering. For the linearized 
dependence of a on y, this yields 

dv 
~-~ = no ~v,  [281 

giving an exponential variation of v with t between scatterings. 
Conveniently, this also leads to an analytic solution for the velocity and position of a particle 

with inertia (see [21]), as follows: 

Vp(t)=[vp(O) (I +~r/oQ]exp(-t/Q+[(l +v:r/oz)]exp('q°t)' [29] 
which is readily integrated once more to give yp(t). 

The resulting concentration profiles for z ÷ = 1 are shown in figure 5 compared to the profile 
presented in figure 3. A marked concentration build-up is observed for both methods of time 
sampling, peaking around y + =  0.1 to 0.2. The peak is nearly a factor of 2 higher with 
"exponential" time sampling than that obtained using [19], i.e. around 40 times the concentration 
at large y ÷ is the "well-mixed" case. This peak value is not much less than that observed by KR 
using the more complex a(y) behaviour, even though the a values at these small y+ are several 
times larger here than in their work. However, the precise peak magnitude depends on how the 
profile is affected at small y ÷ by loss at the wall, and this could be quite different for the two a(y) 
functions. 

Figure 6 shows the results for ~ + = 10 and 100 (using [19] time sampling). As z ÷ increases, the 
build-up becomes less pronounced, and is barely noticeable at z ÷ = 100, as was found by KR. The 
solid lines are merely an eye-guide through the points. 

At small values of z +, use of the linearized a variation leads to much higher values of K + 
compared to those of KR (and compared to experiment) due to an overestimation of  the 
interception contribution. The latter, in turn, results from the slower fall off in a as y ÷ approaches 
zero. However, at large z +, the values o f K  ÷ are quite close to those of  KR (and to the experimental 
results). 

4. CONCLUSIONS 

The foregoing analysis and simulation results indicate that the large build-up in concentration 
near the wall observed by Kallio & Reeks (1989) at low ~ + values is very likely tobe  a consequence 
of the failure of their random-walk prescription to satisfy the "well-mixed" condition[which 
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requires that, in the limit that the pollutant follows the eddy motions of carrier fluid everywhere 
exactly, an initially spatially uniform concentration should (on average) remain so]. 

The work highlights the fact that in constructing random-walk simulations for turbulent 
dispersion, in which simplified models of the turbulent flow-field are used, care must be taken to 
satisfy certain fundamental constraints if spurious concentration trends are to be avoided. 

The work illustrates how it is possible in some circumstances to construct a one-dimensional 
random-walk process for calculating deposition velocities, analogous to the one-dimensional 
eddy-diffusivity equation which is conventionally used as a starting point for this purpose. 

The results for deposition velocity vs stopping time obtained from the model developed here, 
albeit using a simplified boundary-layer specification, are sufficiently encouraging to suggest that 
it would be worth extending the treatment to handle a more realistic boundary-layer prescription 
and equation of motion for particles. The indications are that the modelling captures enough of 
the physics to enable a number of other questions concerning inertial deposition to be addressed, 
such as the effect of trajectory-crossing and the influence of body forces such as gravity. 
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A P P E N D I X  

Implication of v /a Constant 

It is convenient to work back from the condition that 

dn+(y, v+) 
= O, 

dy 
when 

n+(y, v +)ocV +py(V +), 

where d/dy is a total derivative as before. This implies 

an+(y, v+) an+(y, v+) dv+ + 
Oy 0v+ dy 

and thus that 

m = 0  

[A.1] 

[A.2I 

[A.31 

dtr a 

v_+ = const. [A.8] 
O" 

The same applies to negative values of v. This implies that holding v/a constant between scatterings, 
as in the KR simulation, would lead to the condition that dn+/dy = 0 in the limit that the particles 
are following the eddy motions exactly. This, in turn, implies that in the same limit 

dN± = 0, [A.9] 
dy 

where N .  is the integral of n+ over all values of v+ (and similarly for N ) .  

[A.7] 

with solution 

Therefore, 

dv _ v+ 

dr+ _ \ Oy / [A.41 
d, (On+  

\ov+] 
when n+ is given by [A.2]. Focusing on the case thatPr(y, v+) is governed by a single scaling velocity 
at each y, a (y )  say--as is certainly the case for a Gaussian distribution--then 

v +pe( y, v + ) =f(r/), [A.51 

where f is a (so far unspecified) function and q = n+/a(y). Thus, 

\ a 2] dyJ  [A.61 


